An Adaptive Rayleigh-Laplacian Based MAP Estimation Technique for Despeckling SAR Images using Stationary Wavelet Transform
نویسندگان
چکیده
Removal of speckle noise from Synthetic Aperture Radar (SAR) images is an important step before performing any image processing operations on these images. This paper presents a novel Stationary Wavelet Transform (SWT) based technique for the purpose of removing the speckle noise from the SAR returns. Maximum a posteriori probability (MAP) condition which uses a prior knowledge is used to estimate the noise free wavelet coefficients. The proposed MAP estimator is designed for this purpose which uses Rayleigh distribution for modeling the speckle noise and Laplacian distribution for modeling the statistics of the noise free wavelet coefficients. The parameters required for MAP estimator is determined by technique used for parameter estimation after SWT. Moreover an Laplacian – Gaussian based MAP estimator is also applied and the parameter estimation is done using the same method used for the proposed algorithm. For the purpose of enhancing the visual quality and to restore more edge information, a wavelet based resolution enhancement technique is also used after applying the Inverse stationary Wavelet Transform (ISWT), using interpolation technique. The experimental results show that the proposed despeckling algorithm efficiently removes speckle noise from the SAR images and restores the edge information as well. An Adaptive Rayleigh-Laplacian Based MAP Estimation Technique for Despeckling SAR Images using Stationary Wavelet Transform
منابع مشابه
An Adaptive Sar Image Despeckling Algorithm Using Stationary Wavelet Transform
In this paper, we present a Stationary Wavelet Transform (SWT) based method for the purpose of despeckling the Synthetic Aperture radar (SAR) images by applying a maximum a posteriori probability (MAP) condition to estimate the noise free wavelet coefficients. The solution of the MAP estimator is based on the assumption that the wavelet coefficients have a known distribution. Rayleigh distribut...
متن کاملA Novel Adaptive Stationary Wavelet-based Technique for SAR Image Despeckling
In this paper, we present a Stationary Wavelet Transform (SWT) based method for the purpose of despeckling the Synthetic Aperture radar (SAR) images by applying a maximum a posteriori probability (MAP) condition to estimate the noise free wavelet coefficients. A MAP Estimator is designed for this purpose which uses Rayleigh distribution for modeling the speckle noise and Laplacian distribution ...
متن کاملDespeckling Synthetic Aperture Radar Imagery using the Contourlet Transform
A novel method of Synthetic Aperture Radar (SAR) image despeckling using the contourlet transform representation is presented. Justification for the use of the contourlet signal representation, originally developed for natural images, is given. Methods of evaluating the despeckling performance of various algorithms are provided. Finally, a comparison of performance of multilook processing, wave...
متن کاملStatistical Quality Analysis of Wavelet Based SAR Images in Despeckling Process
Synthetic aperture radar (SAR) images are mainly denoised by multiplicative speckle noise, which is due to the consistent behavior of scattering phenomenon known as speckle noise. This paper presents the basic concept, role and importance of Discrete Wavelet Transform (DWT) in the field of despeckling SAR images and also offers a study of SAR image quality on applying DWT on the speckled image ...
متن کاملSpeckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Using Laplace Distribution
Speckle is a granular noise-like phenomenon which appears in Synthetic Aperture Radar (SAR) images due to coherent properties of SAR systems. The presence of speckle complicates both human and automatic analysis of SAR images. As a result, speckle reduction is an important preprocessing step for many SAR remote sensing applications. Speckle reduction can be made through multi-looking during the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJAEC
دوره 4 شماره
صفحات -
تاریخ انتشار 2013